Exercise 87

For the following exercises, for each polynomial, a. find the degree; b. find the zeros, if any; c.
find the y-intercept(s), if any; d. use the leading coefficient to determine the graph's end behavior; and e. determine algebraically whether the polynomial is even, odd, or neither.

$$
f(x)=3 x-x^{3}
$$

Solution

Part (a)
The degree of the polynomial is 3 because the highest power of x is 3 .

Part (b)

Set $f(x)=0$.

$$
f(x)=3 x-x^{3}=0
$$

Factor the left side.

$$
\begin{gathered}
x\left(3-x^{2}\right)=0 \\
x(\sqrt{3}+x)(\sqrt{3}-x)=0
\end{gathered}
$$

Therefore, the zeros are

$$
x=\{-\sqrt{3}, 0, \sqrt{3}\} .
$$

Part (c)
y-intercepts are the points where the function touches the y-axis, which occurs when $x=0$.

$$
f(0)=3(0)-(0)^{3}=0
$$

Therefore, there's one y-intercept: $(0,0)$.

Part (d)

$-x^{3}$ is the dominant term in the polynomial, so the graph is cubic. Since the coefficient is -1 , it goes up to the left and goes down to the right. The graph of $f(x)$ versus x below illustrates this.

Part (e)

Plug in $-x$ for x in the function.

$$
\begin{aligned}
f(-x) & =3(-x)-(-x)^{3} \\
& =-3 x-\left(-x^{3}\right) \\
& =-3 x+x^{3} \\
& =-\left(3 x-x^{3}\right) \\
& =-f(x)
\end{aligned}
$$

Since $f(-x) \neq f(x)$, the function $f(x)$ is not even.
Since $f(-x)=-f(x)$, the function $f(x)$ is odd.

